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CCNFORMAL MAPPING OF A CLASS OF 
DOUBLY CONNECI'ED REGIONS" 

Abstract 
I t  is shown i n  the present investigation that the system of 

two integral  equations obtained by Kantorovitch and Muratov for the 
conformal mapping of an arbitrary,  f i n i t e ,  doubly connected region 
onto a circular annulus simplifies considerably when the configuration 
has one o r  more axes of symnetry and one of the boundaries is a circle. 
Once the correspondence between boundary points is established the 
function which maps the annulus B 6-plane onto the given 5 
domain BZ i n  the z-plane is obtained by a procedure of successive 
approximations. The method is i l lustrated i n  several cases where 

. 

in the 

the web fraction is close t o  one. 
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I .  

INTRODUCTION 

Solution of a large nmber of problems of importance in  modern 

technology hinges c r i t i ca l ly  on the possibil i ty of conformal transfoma- 

t i on  of a doubly connected region onto a circular annulus. For example, 

the analysis of stresses in a so l id  propellant rocket grain by means of 

complex variable techniques requires the conformal transformation of 

an annulus onto a region with a circular external boundary and an internal 

boundary which generally consists of several identical  and symmetrical 

par ts  which form a s t a r  shaped configuration. Wilson [l] 1 has solved 

th i s  problem i n  the case that the web fractionz is relatively small. 

can be shown tha t  Wilson's approach leads t o  large e r ror  in  mapping the 

external c i r c l e  when the web fraction exceeds certain values which depend 

upon the nunber of axes of symmetry. 

I t  

For example, Arango [Z] has shown that  for  four axes of symnetry 

the e r ro r  increases rapidly when t h e  web fraction increases beyond 0.5. 

When the web fraction reaches the value 0.90, the outer boundary has lo s t  

a l l  semblance of a c i rc le .  This error  arises due t o  the fac t  that  Wilson 

and Arango treated the conformal transfoxmation of an i n f in i t e  domain 

, 

'Numbers i n  brackets designate References a t  the end of the paper. 

'Web fraction w i n  defined as the rat io  of the diameter of the c i r c l e  
circwscribing the inner boundary of a doubly connected region t o  the 
diameter of the c i rc le  circumscribing the outer boundary. 
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with a hole onto another such region. Consequently, while the mapping 

function accurately transfonns the unit c i r c l e  i n  the [-plane in to  the 

internal boundary i n  the z-plane, the external boundary t r ans fons  only 

approximately in to  a circle 

I 

However the approximation can be very accurate provided the web 

fraction is suff ic ient ly  small. 

transformation of the external boundary is of substantial  importance since, 

while the web fraction may be sufficiently small i n  the unburned so l id  

propellant grain, it w i l l  increase taward unity as a consequence of the 

burning process. 

develop techniques for  the confonal  transformation of f in i t e ,  doubly 

connected domains 

This concern with the accuracy of the 

I t  should be clear,  therefore, t ha t  it is essential  t o  

Kantorovitch and Muratov [3] have shown that the problem of confonal  

t ransfonat ion of an arbitrary,  f in i te ,  doubly connected region onto a 

circular  annulus can be reduced t o  the solution of two coupled integral  

equat ims for  the unknown functional dependence 

ei = e .  (@.) 1 1  
(i = 1,Z) 

where the subscripts 1 and 2 designate the inner and outer contour, 

respectively; and fl and 8 are the arpnents  i n  the z and E planes, respectively, 

(See Fig. 1). 

and one of the boundaries is a circle, it is shown i n  th i s  investigation 

If the canfiguration has one o r  more axes of symmetry 

tha t  the system of two integral  equations simplifies considerably. 

kce  ei = ei((Zli) is obtained Kantorovitch and Muratov [3] derived 

a straight forward technique for  determining the conformal transformation 



C 

However for  convenience 

vibrations,etc.), it is  important t o  know the function which maps an 

annulus onto the given shape; i,e., 

applications (mathematical theory of e l a s t i c i ty ,  

Clearly, i f  c= ~(z) is known, i n  principle, one could determine 

z = z ( 6  ) . However, it is more convenient t o  determine z = z (6 ) 

direct ly  once both integral  equations are solved. 

-4- 



DERIVATION OF THE INTEGRAL EQUATIONS 

Let us consider an arbi t rary,  f in i te ,  doubly connected danain BZ 

in the z-plane. (See Fig. 1). We denote by 5 = (z) the function which 

maps BZ i n to  the circular annulus B 
5 

transforms in to  the unit c i rc le  and C1 into the c i rc le  

define 

i 
in the c-plane; the cmve C2 

wherein, for  emphasis, we point out that z represents a generic point i n  

BZ’ 

Introducing a cut L in  the domain BZ (see Fig. 2) and applying the 

Cauchy integral  formula resul ts  i n  

is not single valued in  BZ; w,th every cycle arouncl C1 the imaginary 

part  increases by 2n i, Consequently, 

-5- 



c 

In order to calculate its value we can express in the following form: 

But 

F(t) I L- = I n .  + i e 

and 

F(t) 1 L+ = h,O+ i( e +  2 ~ )  

Thus 

F(t) 1 L- - F(t) I L +  = -2 ni 

and Eq. (3b) becomes 

Substituting Eq. (3e) in Eq. (2) we obtain 
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For points on C2 we define 

F(z) = 1”p2 + i q q  = i e  z ( q )  

since p = 1; and for  points on C1 we define 

F(z) = 1”p1 + i o 1  (cr1) 

wherein rl and C2 denote the arc  lengths on the boundaries C1 and C2 I 

respectively, from arbitrary fixed points on the respective boundaries 

t o  the points under consideration. Thus the first tern on the right 

hand side of (4a) becomes: 

Similarly the second term results in: 

The expression f hpl dt vanishes identically since 
c1 - t-2 
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p1 is a constant and the integrand is analytic within and on the 

boundary of C1 (Cauchy-Goursat ‘Iheorem). Thus Eq. (4a) can be written: 

This equation can be more conveniently written i f  we use the 

following relations (see Figure 2 ) .  

t - z  = I t -z!  eiw = re  i w  

z -z  = r e lW1 
i w  z -z = r2e 2 

1 1 

2 

= 8  

4- w = r/2-(nt,r) 
- 

where d i s  the 

the tangent t o  

axes, w is the 

axes and nt is 

we define: 

angle between the positive counterclockwise directiun of 

the boundary Ci and the positive direct ion of the real  

angle between r and the positive direction of the real 

the inwardly directed normal t o  the boundary Ci. Additionally 

dt  = (d t l  eid 

I d U  I i& or d t  = d b * e  

is the magnitude of a different ia l  element of the boundary Ci. Making 

use of these definitions we can express dt/ t-z as follows: 

wherein d t  = 

- 8- 



Similarly: 

Now, Eq. (4b) 

F(z\ = 

becomes : 

Equating the imaginary parts of (4c) we obtain: 
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wherein Eq. (1) has been used. 

f i rs t  term of Eq. (Sa) becomes: 

If the point z is located on C2 the 

This is  a well knm resul t  i n  the theory of the potential. 

Eq. (Sa) becomes 

*Thus, 

If naw the point z moves t o  C1 the integral 

*See Appendix. 
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becomes 

and we obtain the second integral  equation. 

Equations (6) constitute the system of coupled integral  equations which 

we  have been seeking, 

of the relations 

Their solution w i l l  y ie ld  the functional form 

ei = ei (Ui) ( i  = 1,2) 

o r  what is equivalent 

e i  = e i  (0iI ( i  = 1,2) 

Let us now simplify Eqs, (6) when C2 is a circle and the domain 

B has p axes of symmetry. Consider t h e  expression cos (nt, r )  as it z 
r 

appears in  the f irst  integral  of Eq. (6a). From Fig, 5 ,  since z c C 2  

2 r2 = 2 R  [ I -  COS (9, - !JC ) 3 
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where XC’ Y ,  and gC are the values of x, y and P, a t  the point z an C2. 

Addi ti m a l  ly  , 

cos (nt, r) = cos P, cosw + s in  P, s i n  o 

and 

COS w = x - x = R (COS P, - COS $3,) 
C - 

r r 

s i n  w = y - y, = R (sin (J - sin gC) - 
r r 

Substituting (9b) and (9c) into (sa) we obtain: 

cos (nt, r) = & [ cos P, (cos @ - cos gC) + s i n  P, (sin $3 - s i n  gC) ] 

Rearrangement leads t o  
r 

Substituting (8) in  (9d) we f inal ly  obtain: 

cos (ntBr) = 1 
..I, 

r 2R 

Then, the l ine integral  uncrzr consideration becanes: 
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".i' 

so  that  substi tution into Eq. (6a) yields 

I t  should be reemphasized that  Eq. (11) is t o  be used rather than Eq. (6a) 

when C2 is a circle.  Note that  no assumptions of symmetry of the given 

doubly connected domain have been introduced up t o  th i s  point. 

Further important simplifications can be made i n  Eq. (11) when 

symmetry conditions are introduced. 

simplifications it is necessary t o  study the behaviour of the functional 

relation 

For the purpose of making these 

We now introduce the ccmditim tha t  the domain BZ has p-axes of 

symmetry. 

axes of symetry so the p = 4. 

For example, the i l lus t ra t ive  domain of Fig. 5 has four 

We define now: 

Since the configuration has p-axes of symmetry, it is reasonable t o  

expect tha t  (6,) w i l l  be a periodic function of period 2 n/p. 

-13- 



Furthenore it w i l l  be shown tha t  (6,) is an odd function of 

Consider a point P (on the outer boundary) with argunent g2. 

image point i n  the(-plane w i l l  have an argument e2. Because of symmetry, 

i f  we take a point P(') on the outer boundary C2 w i t h  argument 

Its 

(2 d P  - n2) (See Figure 6), its image point in the 5 

an argunent 

-plane w i l l  have 

wherein we have used Eq. (12). 

Similarly points P ( ~ )  on c2 w i t h  arguments 

2kr - n2 - 
P 

w i l l  have image points i n  the 5 -plane with argunents given by 

n e  point P(p) on C2 with argument 

has an image point i n  the [-plane w i t h  argument 

wherein we have used Eq. (12) Once again. On the other hand P (PI 
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has an alternative argument (-@I2) in the z-plane and its image point 

i n  the 1-plane has the alternative argument 

From these alternative expressims for  the argunent of the image 

point of P(p) i n  the E -plane we obtain 

o r  

Thus3 $,) is an odd function of $3,. I t  can be shown tha t  x (02) 
complies w i t h  the well known Dirichlet conditions; and, therefore 

can be expanded in a Fourier sine series,  i.e.: 

We return once again t o  the problem of simplifying Eq. (11). 

of Eq. (12) we can write 

In View 
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Since d 3  = Rd g2, it follows tha t  

In view of t h i s  resul t ,  Eq. (11) becomes 

z& . . .(14) 

In summary, it has been shown that  when C2 is a c i rc le  and the 

dmain BZ has p-axes of symmetry, the applicable integral  equatims are 

Eqs. (6b) and (14). 

E3y an analogous argument it can be shown tha t  when C1 is a circle 

and the domain BZ has p-axes of symnetry, the applicable integral  

equations are Eq. (6a) and the following 

z q .  .(15) 
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NUMERICAL SOULUTION OF "E INTEGRAL EQUATIONS 

We sha l l  limit a l l  further discussions t o  cases wherein the 

outer boundary C2 of the domain BZ is circular and BZ has p-axes of 

symmetry, Thus i n  order t o  re la te  4 the argument of a point on the 

boundary Ci of the domain BZ i n  the z-plane, and ei, the argument of 

the image point on the boundary of the domain B in  the 6-plane, 

we must integrate Eqs. (6b) and (14) . Closed form solution of these 

integral  equations seems extremely d i f f icu l t  so we must be sa t i s f ied  

with numerical solution thereof . 

5 

The explanation of the nunerical procedure is readily presented i n  

terms of a specif ic  example. 

Fig. 7 wherein the inner boundary is square with sides para l le l  t o  the 

coordinate axes. 

i n  t h i s  case. We begin the nunerical procedure by subdividing the 

boundaries C1 and C2 into any arbitrary nunber of small segments which, 

i n  general, need not be equal i n  length. 

40 equally-spaced points on each boundary nunbered as shown i n  Fig. 7.  

The arc-length between points on C1 is denoted by A and on C2 by 

Therefore we consider the dmain BZ of 

Clearly, BZ has four axes of synnnetry so that  p = 4 

In the specif ic  example we take 

(q 
"he theoretical development required the introduction of a cut 

between C, and C, as shown i n  Fig. 2. Thus, the next s tep is t o  intro- 
A L, 

duce such a cut i n  

a lmg  the positive 

1 on C1 t o  point 1 

BZ of Fig. 7. 

half of the x-axis. Thus, the cut runs from point 

I t  w i l l  be convenient t o  take t h i s  cut 

on C2. 
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We consider first the integration of Eq. (14). We se lec t  a typical 

point on C2; for  example, the point 2 .  Associated with t h i s  point is its 

image point, (2) on 8 2 0  We denote the argument associated with the image 

point by e 
2,2 

point under consideration lies on f 2  while the second subscript indicates 

the point i t s e l f .  l'hus, e 

wherein the f i r s t  subscript indicates the fact  tha t  the 

denotes the argument of point 6 ond, 
2,6 

denotes the argument of point 11 ond,.  We m u s t  now construct and el,ll 

lines from the ends of the cut through the point under consideration; i.e. 

l ines from point 1 on C1 and point 1 on C2 through the point 2 on C2. 

"he angle enclosed between these l ines is the angle B((-J2) of Eq. (14) 

and fo r  numerical purposes it is denoted by B 2 , 2 ,  see Fig. 7. NOW Eq. (14) 

can be rewritten as follows: 

The angle B is obtained from Fig. 7 by simple trigonometry. Using 
2 * 2  

the l aw of cosines gives 

-18- 
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In 

of 

t h i s  expression we have adopted the following notation: the coordinates 

the coordinates of point 1 on C2 ; (xl, 1D yl,l) denote the coordinates of 

point 1 on C1. Clearly, the f irst  subscript denotes the boundary (C1 or  C2) 

on which the point lies while the second subscript denotes the point 

itself. Now, we consider the evaluation of the l ine  integral  i n  Eq. (16). 

We construct a l ine fran point 2 on C2 t o  a typical point 10 on C1, 

see Fig, 7. We construct the inwardly-directed unit noma1 Nt t o  C1 

a t  point 10 as shown. The angle enclosed by t h i s  normal and the constructed 

l ine  is the angle (nt, r ) .  I t  w i l l  prove convenient at  this point t o  

define the angle +lD1oD the angle included between the outwardly directed 

un i t  normal t o  C1 at  10 and the x-direction. Clearly, from Fig. 7,  we get: 

1 , l O  

L ,2 
wherein P) 

use subscripts 2,2) between the x-direction and the l ine fran point 2 

denotes the angle associated with the point 2 on C2 (we 

on C2 t o  point 10 on C1. Now 

1 , l O  - cos (nt,r) = cos ( w '1610 

o r  

-19- 



I t  m u s t  be pointed out t ha t  t h i s  expression is associated only with the 

points 2,2 and 1 , l O .  The integrand of the line integral  can naw be 

written as 

1.10 

We have considered cmly one point, 10 on the boundary C1, but i n  accord 

w i t h  Eq. (16) we must perfom a line integration over the ent i re  

boundary C1* ‘Ihus, we m u s t  follow the procedure outlined above fo r  point 

10 on C1 for  a l l  points on C1 and then, and only then, can we approximate 

the l ine integral  by a sum. It  follows then, tha t  Eq. (16) becanes 

We can generalize this result  t o  apply t o  any point i on C i ,  i.e., 
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where 

J 

Because of symmetry we have the follming relationship 

I iS l .2  

Consequently, we do not require relationships such as Eq. (17) ,  

corresponding t o  those boundary points which l ie  on axes of symmetry. 

Thus, we have four Eqs. (17) corresponding t o  i = 2,3,4,5 ammg the 

folluwing unknowns: 

-21- 



and 

Clearly, four  additional equations are required and these we obtain i n  a 

similar fashiori frm Eq. (6b). 

in establishing Eq. (17) We obtain the following fran Eq. (6b) 

Folluwing a procedure similar t o  tha t  used 

where 

(i = 2,3,4,5) 

2.9 

(%= 1,2, *",40) i 
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1,q 

1,i 
I t  is important t o  point out that  F 

I t  is necessary t o  evaluate the limit of E q .  (18d) when q 4 .  

becomes indeterminate vhen q = i. 

Since 

1,q = xl,q( U l )  X 

and 

it is easy t o  see that: 

Thus, using L'Hopital's Theorem: 

-23- 



Wherepl, i  is the radius of curvature a t  point i on C1.* Equations 

(17a) and (18a) constitute a system of eight unknm argunents which we 

must nuw solve. 

of points chosen on the boundaries of BZ. 

in to  2pN segments where N is  any integer we sha l l  obtain 2(N - 1) 

Clearly, we obtain eight equations because of the number 

If we subdivide C1 and C2 

equations analogous Eqs. (17) and (18) i n  2. (N - 1) unknown argunents ; v i z ,  , 
2PlJ '7 9 e 2, i = - ;?l~+ +P - I e,,$ F Z , ~  do; 

77 9=1 
(z = z,3,4, ' '  AH (Ma) 
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(20 = 2,3,4, A / )  

wherein the quantities F are given by Eqs, (17b), (18b) and (18d) 

except t ha t  j and q range from 1 t o  2pN. In the spec i f ic  problem 

considered, Fig. 7 ,  N = 5 so  we obtained eight equations. 

-25- 



APPLICATIONS OF THE NUMERICAL PROCEDURE 

For a given dmain BZ w i t h  p-axes of synnnetry it is necessary t o  

select f i r s t  the number 2pN of segments along C and C2 or  in  essence t o  

select  the integer value N, 
1 

For 

(i = 1,2) 

we sha l l  have 2pN points. 

are wry easi ly  determined t o  be 

The coordinates of the points along C2 

= R COS (k-1) n : k = lJ,. . . 2pN - 2 ,  k 
X 

NOP 

= R s i n  (k-1) TI : k = 1,2, .  . . 2pN y2, k 
N*P 

where R is  the radius of CZe The angle $ is easi ly  seen t o  be 
2,k 

) of points on C constitute given data 1 The coordinates (xl 
,9* y L q  

since the boundary C1 is given i n  the form of an analytical expressicm 

relating the coordinate variables of points on C1, o r  i n  the form of a 

table expressing the same relationship or i n  scme other equivalent form, 

Thus, xl,q and yl,q for  the preselected points on C1 are determined i n  a 

suitable manner depending upon how C1 is defined. 

angles IJJ 

nation of IJJ 

The determination of the 

can be done graphically 3r analytically. An exact determi- 
1,q 

w i l l  require the knowledge of 
L q  

-26- 



or  the equivalent formulation 

Thus: 

I f  N is large, an accurate determination can be done by replacing 

with 

As a numerical example l e t  us consider the domain BZ, shown, in Fig. 8, 

with a square inner boundary (C,) and a circular outer boundary (C2). 

is of interest  t o  point out that  the web fraction w for  this domain is 0.75. 

We begin by taking N = 5 so  the 2pN = 40 since there are four axes of 

I t  

symmetryo The next step is t o  evaluate the 

) of the pre-selected points and (xZ,i, y2,i 
respectively, as explained in  the preceding 

coordinates, (xl ,i, y1 ,i) 

on the boundaries C1 and C2, 

paragraphs. Next, the angles 

-27- 



are determined analytically or  graphically as appropriate. 
JI 1,i and JI2, i  
With the above as input information Eqs, (19) were solved on an IBM 

7090 d ig i t a l  computer for  the eight unknown angles; viz., 

j = 2,3, . . 8  

The functional relations ei = ei (Ii .) are shown i n  Figs. 9 and 10. We 

notice tha t  el  is negative for  0 <e1 <13'. This is not admissible for  a 

one t o  me correspondence between points unfl and C1; fo r  one value of 

e we have two different values of 1. Clearly the nunber of divisions 

taken is not enough for  an accurate determination of the relations 

e 3  

Taking 2pN = 80 (N = 10) the situatj.cn improves considerably and 

for  2pN = 160(N = 20) el  i s  positive &r a l l  values of 4,. 
Figures 9 and 10 we notice tha t  the functional relation el = el(tl) is 

Canparing 

very sensit ive t o  the number of intervals taken along C1. Huwever 

= e2 (t2) does not change in  such a drast ic  manner when the number of 

This resul t  is not unexpected since the numerical 
e 2  

div is ims  is increased. 

procedure requires solution of Eqs .  (6b) and (14). In Eq, (14) it is 

necessary t o  integrate once nunerically while i n  Eq, (Bb) it is necessary 

t o  integrate twice by numerical procedures. Therefom VR expect a @'eater 

accumulation of ermr i n  Eq. (6b). 



. 

Figure 11 shows the functional relations ei = ei (Il) for  a domain 

BZ sham i n  Fig, 12. "he web fraction w is equal t o  0.91. 

A danain with an hexagonal inner boundary is shown i n  Figure 13. 

"he calculated values of ei as functions of ei are shown i n  Figure 14. 

for  2pN = 120 (p = 6 i n  th i s  case). 

I t  is one of the objectives of this invest igat im t o  consider the 

influence of the web fraction m the relation ei = ei (ii). Comparing 

= e2 (I2) (Figure 10) corresponding t o  w = 0.75 and e2 - e2 (I2) 
(Figure 11) corresponding t o  w = 0.91 we immediately notice the fac t  

tha t  as w decreases, the functional relation between e2 and o2 approaches 

e = lze This conclusion agrees w i t h  Wilson[l] who developed a very 

interesting method for  obtaining the mapping function when the web 

fraction is relatively small, 

of a star-shaped perforation (Figure 15). 

the configuration of Figure 15, as the web fraction w decreases the 

functional relation e2 = e ( ) approaches the expression e2 = jZs 

This is  further i l lus t ra ted  for  the case 

As shown i n  Figure 16 for  

2 92 
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THE MAPPING FUNCTION 

Concerning the transformatim of an annulus onto an arbitrary 

d o d l y  cannected regicm, the following theorem is known [4] : 

"Any doubly cunnected region can be transformed, confonnally 

and with reciprocal single - valuedness, into an annulus with 

the rad i i  of its bounding circumferences f i n i t e  or  infinite." 

We are concerned with a domain BZ wherein the outer boundary C2 is 

circular and BZ has p-axes of symmetry. We denote the rad i i  of the 

circumferences 8, and and f 2 ,  
respectively, 

m u s t  pass t o  the outer and which to  the inner circumference of the 

annulus the r a t io  

ra t io  constitutes one of the d i f f ich l t  problems of the theory of canformal 

transfornation [4]. Clearly we can always t a k e p l  o r p 2  equal t o  unity 

and the unknuwn w i l l  be f 2  ory,. respectively, 

corresponding t o  C1 and C2 b y p  

Once we specify which of the boundary curves of the reg im 

w i l l  be fully defined, Evaluation of t h i s  s,/p, 

The transfonnatim function which maps BZ onto B can be determined 

i n  a straightforwardmanner, using Eqs. (4b) and (1) once the functional 

relations ei = ei( i) are known, 

5 

In  this  manner 

F (2) 
9 

can be found, However for convenience i n  applications (mathematical 

theory of e l a s t i c i ty ,  vibrations, etc.) it is important t o  know the function 

which maps an annulus onto the given shape; i.e, , z = z (6 ) , Clearly 

i f  6 = 6 (z) is known, i n  principle,  one could invert t h i s  relation to  

-30- 



obtain- the above. However it is more convenient t o  determine z = z (  5 ) 

direct ly  once both integral  equations .are solved. . 

In general the functim which maps B onto BZ can be expanded in  
F 

a Laurent ser ies  [ 4 ] ;  i.e., 

From a practical  point of view, if the ser ies  above is truncated a t  a 

f i n i t e  nunher of t e rn ,  a suff ic ient ly  accurate transformation w i l l  

result .  Thus, we obtain 

?he unknowns, now are the coefficients ai' 

Let us take fo r  convenience = lb We know tha t  7 1 and we Y1 Y 2  
w i l l  assm that  it is a known value for the time being. 

Eq. (20b) in to  real  and imaginary parts we obtain: 

Separating 
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Equations (21) w i l l  now be used in developing a system of l inear 

algebraic equations with the a i9s  a s  the unknowns. 

and B are knm since we have assumed, for  the time being, that  

known and, consequently, correspanding t o  each point on C1 and C2 we can 

write Eqs, (21) with only the aips as &own. 

already established the procedure by which the points on C1 and C2 

can be related t o  t h e i r  image points on d 
Eqs, (21) w e  have (q + S + 1) unknm coefficients ai(q,S >/ 1) e Therefore, 

we require (q + S + 1) equations. 

degenerate t o  a single equation, 

other point Eqs, (21) are independent and not degenerate. 

choose t o  include one or  both of Eqs, (21) i n  the system which we sha l l  

solve fo r  the ai@s is unimportant. 

obtain a system of (q + S + 1) equations, 

The domains BZ 

J o 2  is 6 

This is true since we have 

and d,, respectively. In 

A t  the points e = O  and ~ / p  Eqs. (21) 

On the other hand corresponding t o  any 

Whether we 

I t  is only essential  that  we f ina l ly  

with 

For points on C1, f =  p1 and el = el(++ Taking any point 

coordinates (xl .) the image point i n  the 6-plane w i l l  be 
,j * y1 ,J 
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located on the unit  circle gl and its coordinates w i l l  be given by 

The value of el . w i l l  be h a c m  from e 

the integral  equations (6b) and (14) have been solved. 

is used for  points on C2* 

-f(tan-lyl,j/x,,j) since ,J 1,j 
The same procedure 

We can take any arbitrary nunber of points on 

C1; say n and m points on C2 for  w h i c h f = ~ 2 .  Thus it w i l l  prove convenient 

t o  rewrite Eq. (2Ob) i n  the following f o n  

In t h i s  form we have (n + m) coefficients t o  determine. Using Eqs. (21) 

for  n - points on C1 (p 1) and m - points on C2 (y=y2) we obtain a 

l inear system of equatians i n  the (n + m) coeficients of the truncated 

ser ies  (22a). Solving ais l inear system of equations the coefficients 

are found and the apprmimate mapping function is k n m ,  

Let us return t o  the determination of p2* Methods 

i n  the l i t e ra ture  t o  f i n d y . .  However those methods are 

are available 

very di f f icu l t  

t o  apply in  pract ical  problems. 

We take (n + m) points on C1 and C2 and we write Eq, (22a) i n  the follawing 

form: 

TBe following direct  approach is suggested: 
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Proceeding as previously explained we write down (n + m) equations 

where now the unknms are (n + m - 1) coefficients and p 2 .  However 

we observe now that  we have n - linear e-tions in the mknown coefficients 

and m - nonlinear equations in the unknown coefficients and? 2.  I t  is 

quite convenient t o  obtain the unknowns by using a method of successive 

approximations without solving the ncmlinear system of equations directly,  

Ihe procedure is the following, As a f i r s t  approximation t o  the mapping 

function which maps the annulus B 5 
the mapping function which maps the outside of the unit c i rc le  i n  the 

onto the domain BZ we determine 

5 -plane onto the outside of C1 in  the Z-plane; i.e., we write 

(0) 
The coefficients a are calculated fran a system of n-linear equations 

1-jp 
obtained from n-points an C1, F o t Y = l ,  Eq. (23a) maps the unit  circle 

)f i n  the 5-plane onto the contour C1 i n  the Z-plane. F o r y 2 > >  1 
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, 

Eq. (23a) maps circles in the [-plane onto approximate circles i n  the 

z-plane. I f  the radius of C2 is R, we can obtain Y2(l) by requiring that :  

In order t o  obtain a second approximation we write (n + m - 1) 

equations i n  the (n + m - 1) coefficients; namely, 

cmsidering n-points on C1 and (m - 1) points on C2. We exclude from 

this system the equation corresponding t o  the point e 

which has coordinates ( x ~ , ~ ;  yt,,, ) i n  the Z-plane, The system of 
= t2, = v/p 2 ,m 

(1) 
(n + m - 1) equation is solved 

. _  
for  the (n + m - 1) unknms a 

t o  the point f2,m - n/p we have 

using 
i 
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(1) 
wherein 5 -p2 e 

calculate x(’) and y(’) . In general 

‘IP Separating real and imaginary parts we 

2Bm 2Bm 

We must now evaluate the next approximation, p2(2) t o  p2. we follcm 

a procedure similar t o  that used i n  arriving at f Z ( l ) .  We write Eq, 

I t  turns out tha t  the predominant term in  t h i s  sequence is the me involving 

the first power of 

each other. 

while the other t e r n  more or less cancel 
1 5 2  I 

Consequently, we take the following as a second approximation 
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Using t h i s  new approximation we calculate a new mapping function as 

before. If it turns out that 

t o  within some arb i t ra r i ly  pre-selected accuracy, the procedure is ccwpleted 

and the mapping function determined. 

the next approximation is determined by l inear interpolation on a plot  of 

If the above cr i ter ion is not sat isf ied,  

( i )  ( i )  
versus R wherein: 

(i> 
In e s s e n a ,  R 

we select the next approximation as that value of 

t o  R. 

desired accuracy, 

denotes the i - th approximation t o  R, Frcm t h i s  plot  

which corresponds Pz 
The procedure is repeated until  the cr i ter ion is sa t i s f i ed  t o  any 

Once the mapping function is determined t o  the des i red  

accuracy we can plot  the boundaries of the resulting doubly connected 

region and canpare them w i t h  the given boundaries C1 and C2. Both sets 

of curves w i l l  have a t  least (n + m) points i n  comnon. 

points chosed increases indefinitely we can asswne that  both se t s  of 

As the number of 

curves w i l l  coincide, For practical  reasons it is desirable t o  carefully 
- -  
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se lec t  the col locat im points so as t o  maintain a m i n i m  nanber of 

equations for  an optimum approximation of the cume. "he procedure 

outlined above depends on the requirement that the mapping function trans- 

f o m  the circular annulus point-by-point onto the desired domain. The 

procedure may be extended to  include cmditions on the curvature of the 

given contours as w e l l ,  

subsequent app 11 cat ion , 

This statement w i l l  be i l lus t ra ted  in  a 
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FURTHER APPLI CAT IONS 

We w i l l  consider f i r s t  a simple example which w i l l  serve as an 

Let BZ be i l lus t ra t ion  of the method of successive approximations. 

the danain shown in  Figure 17, 

t o  i l l u s t r a t e  only the successive approximation procedure developed 

i n  the previous section, The e - 4 relationship implied in  the data 

In this  appl icat im it is our objective 

given b e l m  was independently developed using the method established 

e a r l i e r  for t h i s  purpose, The following conditions w i l l  be used in order 

t o  find the function which maps B 

z-plane: 

i n  the 6-plane onto BZ i n  the 
5 

Inner Boundary (Cl) 

+l,A = 00; e = 00); ~e z = 1-00 
I,* 

a, A t  point A ( 

bo A t  point A the radius of curvature is inf in i te  

c, A t  point B ( f 1 , B  = 

do A t  point C (0 
0 

' l # B  = 15'); I m  z = 0,067 

= 45'); I m  z = 0,283 
1 ,c = 45'; e 1 ,c 

Outer Boundary (C,) 

e, A t  point D (I2 
f ,  A t  point E (t 

= 0'; e 

= 45'; e 2,E 

= 0"); Re z = R = 1.243 
s 2 ,D 

45'); Re z = R cos 45' = 0.879 
2,E 

Eq, (22b) becomes: 
3 

+a5 f 5  

-39- 



wherein t h e  unknowns are: 

a p  a-3’ a-7, a-11, a5 and 42 
Using conditions a, b*, c and d we proceed t o  calculate the coef f ic ien ts  o f  

Solving the r e s u l t i n g  four l i n e a r  equations we obtain:  

- 11 
Z = 0,77895 + 0.2965 tP3 - 0,07895 -7 + 0.00345 

AS a first  approximation t o  p we take 

and we determine the coef f ic ien ts  

1.60 

of 

(See (5), p. 151). 
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from a system of five equations using conditions a, b ,  c, d and e. 

function obtained is: 

The 

z ( l )  = 0,788365 + 0 . 2 9 9 7 ~ ~ ~  0 .08836~-~ + 0.008715-11 - 0.00845 5 

For E =1,60e .rr'4 we obtain 

(2 1 
We determine a new value of y2 ; viz, 

and repeating the same procedure we find 

By linear 

The f ina l  

( 3) i n/4 = 1.58 and fo r  5 = 1.58 e interpolation we obtain p2  
(3) (3) 

x = y = 0,879 
2,E 2,E 

expression for  the mapping function is: 

The maximum e r r o r  in the mapping of C2 is less than one per cent (see 
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TABLE 1) ,  

(as 6 ) t o  Eq, (25a) reduces the error ten times, 

on C 

I t  is important t o  point out tha t  addition of one single tern 
5 Using additional points 

the mapping of the outer c i rc le  could be improved even more. 2 
As a second example let us consider the domain BZ, shown i n  

Figure 8 w i t h  a square inner boundary (C,) and a circular outer boundary 

(C2)o 

angular points, 

are obtained f r o m  Figures 9 and 10 where the ei = ei(ti) functional 

relations are plotted. 

I t  is convenient t o  consider rounded corners instead of ideal  

The conditions used for  calculating the mapping function 

(See TABLE 11) 

Following the procedure previously explained we f ind p2 - 1.5912 

and the corresponding mapping function is: 

-11 + z = 5,90377376 - 0,9956698 co3 + 0.08597233 cm7 - 0.02493565 

-23 + 

+ 0,009366175 6-l’ - 0,003723699 5-l’ + 0.0009582365 

+ 0,0241344 6’ + 0,00005452 5’ 

The m a x i m  e r ro r  for  C1 is of the order of 0,002 per  cent and fo r  C2 

is 0,02 per cent (See TABLE 111). 

I t  is important t o  point out that  without including point 2 on 

C2 the error fo r  Cz is  of the order of 0.1 per cent, 

remarked that following Wilson’s approach [l] the e r ro r  for  C2 would be 

of the order of f 5 per cent, 

I t  should be 
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Now we consider the domain BZ, sham in  Figure 1 2 ,  The web fraction 

i n  th i s  case is equal t o  0.91, 

11 we select the cmditicms shown i n  TABLE IV. 

previously explained we f i n d y 2  = 1,275 and the corresponding mapping 

function : 

Using the relations plotted i n  Figure 

Following the procedure 

-11 + z = 5,9712317 5 - 1,1506136 5-3 + 0.015956845 -7 - 0.01573124 5 

+ 0.00365151 5-l’ - 0.0003575 5-l’ - 0,000217676 5-23 + 0.00008544 5 

+ 0,1665126 5” + 0,0088086 5+’ 

-27 + 

The m a x i m u m  e r ro r  i n  the mapping of C2 is of the order of +1 per cent 

and f o r  C1 is 0.002 per  cent, (See TABLE V) . 
i n  [l] would yield an e r ro r  of * 10 per cent. 

The approach followed 

For the domain BZ shown in  Figure 13 ( ei = ei ( i) is sham i n  b 
Figure 1 4 ,  seven points w e r e  selected on C1 and two points on C2. 

TABLE VI),, 

)?2 = 1,1823 and the mapping function is: 

(See 

The procedure of successive approximations yields 

-16 + z = 5,32480595 - 0,4027524 + 0.0308024 5-11 - 0.0088643 5 

+0,002342932 5-21 - 0,000247309 5°26 - 0.00011216 5-31 + 0.054006 

(2 8) 

The error i n  both contours is practically zero (TABLE VII). 

pointed out t ha t  following the approach described in  [ l ]  the e r ro r  would 

be approximately 

I t  should be 

3 per  cent when mapping C2, 
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I 

CONCLUSIONS 

I t  is shown i n  the present investigation tha t  the system of two 

integral  equations obtained by Kantorovitch and Muratov for  the conformal 

mapping of an arbitrary,  f i n i t e ,  doubly connected region onto a c i rcular  

annulus simplifies considerably when the configuration has one or  more 

axes of symmetry and one of the boundaries is  a circle.  

correspondence between boundary points is established the function which 

maps the annulus B in the 6-plane onto the given domain BZ in  the z-plane 

is obtained by a procedure of successive approximations. 

i l lus t ra ted  i n  several cases where the web fraction is  close t o  me. 

The numerical procedure has been performed only fo r  regions with an 

outer circular boundary as t h i s  was  the main goal of t h i s  investigation. 

I f  the configuration has p-axes of symmetry and the inner (rather than the 

outer) boundary is a circle  one could find the correspondence between 

points by solving the integral  equations (6a) and (15) and obtain the 

mapping function using the method of successive approximations described 

i n  Chapter IV, 

Consider, for  example, the graphite brick of a gas-cooled nuclear reactor 

which is a long bar of square cross section with a concentric c i rcular  

perforation [7] . 
Laplace's equation, yields considerable e r ror  when the web fraction is 

greater tha t  0.50. 

investigation does not have that  limitation and the solution w i l l  be much 

more accurate. 

Once the 

5 
Ihe method is 

Configurations of th i s  type are of practical  in te res t  also. 

The collocation technique used i n  [ 71, when solving 

The method of conformal mapping presented i n  t h i s  

For other configurations, such as doubly connected regions 
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. 

bounded by two concentric rectangles, it w i l l  be necessary t o  solve 

Eqs. (6) to  obtain the point correspondence between domains but the 

mapping function may be determined as shown i n  Chapter IV. Configurations 

of t h i s  type are of great interest  i n  certain problems of microwave theory 

[ 81 
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APPENDIX 

r 

when Z is a point Zc2 on C2. From Figure 3 we obtain: 

cos (nt r )  

r 

J do-; = JC3 

since d c 2 .  cos (nt,r) is the projection of d C 2  on the noma1 t o  the 

direction of r. Thus 

Adding and substraction the argument correspmding t o  the point z which 

w i l l  be defined as $, we have 
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However 

(see Figure 4 - a) 

Accordingly: 

Let us now evaluate f( c2) when z is a point Zc2 (see Figure 4b). 

The integral  0,dw becomes 4 

Finally 

r 
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TABLE I 

Inner Boundary (C, 1 
~~ 

Outer Boundary (C,) 

Coordinates of Calculated coordinates 
the given curve using Eq. (25d) 

Y 1  ,i X 1 ,i 1 ,i Y 1 , i  '1,i % ,i X 

1.00 
1.00 
1,oo 
0.98 
0,94 
0.86 
0.75 
0 -60 

0,44 
0.283 

0.000 
0 -030 
0.060 
0.067 
0 -060 
0,050 
0,060 
0,090 
0,160 
0,283 

1.00 
0 . 999 
0.995 
0.984 
0.940 
0 . 863 
0 . 713 
0.585 
0.447 
0.283 

0,000 

0.031 
0.061 
0,067 
0.061 
0,051 
0.058 
0.090 
0.156 
0.283 

O 0  O 0  

S o  So 
12  O 12  O 

15O 15 O 

21° 21° 
26 26 
32' 32 

1.243 
1.245 
1.251 
1.253 
1.257 
1.257 
1.252 

36 36 1.248 
40 40 1.245 
45 O 45 O 1.243 
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TABLE I1 

Inner Boundary (C, 1 Outer Boundary (C, 1 

'2 ,i '1.i Point ll,i el,i 
'1,i Y 1 , i  Point 12,i e2 , i  '2 ,i YZ ,i 

0' 0' 

12' 5' 
26.6' 15' 
32.5' 20' 
41' 30' 
44.2' 40' 

45' 45O 

5.00 
5 .oo 
5 .oo 
5 .oo 
5.00 

5 .oo 
4.95 

1 0 0 
2 25' 22' 

3 45 ' 45 ' 

9.40 

8 . 449 

6.647 
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TABLE I11 

Inner Boundary (C,) Outer Boundary (C,) 

0 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
45 

4.99995 
4.99994 
4 .999934 
4 .999977 
5.00008 
5.00002 
5.00017 
5.00004 
4,999 83 
4,99973 
4.99992 
5 .00039 
5,00093 
5,00113 
5.00076 
4.99992 
4,99918 
4.99927 
5.00041 
5.00157 
4,99992 
4,99074 
4.96817 
4.94999 

0 .oooo 
0,299774 
0 . 59 86 1 1 
0 . 89553 
1.189519 
1 , 47959 
1 , 764 87 
2,0446 
2.31796 
2,58423 
2 . 84242 
3,09145 
3.33032 
3,55823 
3.77470 
3.97932 
4.17135 
4 e 3492 3 
4,s 1038 
4.65142 
4,76897 
4,86069 
4 . 9263 4 
4,94999 

9.39988 
9,39151 
9.36652 
9,32529 
9.26843 
9.19677 
9.11129 
9,01315 
8.90357 
8 , 7 8384 
8,65524 
8,51902 
8.37636 
8.22826 
8 , 0 7567 
7.91930 
7 , 75969 
7 . 59717 
7 . 43188 
7,26379 
7,09263 
6,91800 
6 , 73934 
6,64828 

0 .oooo 
0.39678 
0.79151 
1.18220 
1.56694 
1.94399 
2.31180 
2.66899 
3 . 0 1449 
3 . 34743 
3.66721 
3 . 9 735 1 
4.26623 
4.54551 
4.81169 
5.06529 
5,30698 
5.53756 
7,75791 
5,96895 
6 , 17166 
6 , 36702 
6.55595 
6.64828 

9,39988 
9.39989 
9 . 39990 
9 . 39993 
9 .39995 
9 . 3999 8 
9 , 40000 
9 . 40002 
9.40004 
9.40006 
9 , 40008 
9.400 13 
9.40020 
9.40032 
9 . 40047 
9 . 40067 
9.40089 
9 . 401 15 
9 40140 
9.40165 
9.40185 
9 , 40200 
9.40208 
9.40209 



TABLE IV 

(c2) Outer Boundary W E e r  Boundary 

2 ,i z 
e 

Point  i2, 2 ,i '2 ,i Y2 ,i 
'1 ,i 

'1,i Y1, i  
Point  kl,i el , i  

0' 0' 5 .oo 1 
12 ' 5' 5 ,OO 2 
26*6' 15' 5 .oo 3 

32.5' 20° 5.00 

44.2' 40' 5,oo 

45 ' 45 ' 4.95 

41 ' 30 ' 5.00 

0 0' 7.70  
31.5' 22' 6 565 
45 ' 45 ' 5 444 
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TABLE V 

Inner Boundary (C,) Outer Boundary (C, 1 

2 ,i z 1 ,i z 

xl,i Y 1  ,i X 2 ,i y2,i 1 z 2 , i )  
e (degrees) 

0 

3 
6 
9 
1 2  
15 
1 8  
2 1  
24 
27 
30 
33 
36 
39 
42 
45 

4.9994 
4.9993 
4 . 99 9.5 
4.9993 
4.9992 
4.9993 
4 . 9994 
4.9993 
4 , 9990 
4.9988 
4,9997 
5.0025 
5.0054 
5.0033 
4,9878 
4,9494 

0 . 0000 

0.5403 
1.0706 
1.5817 
2.0658 
2.5169 
2.9312 
3.3068 
3.6435 
3.9430 
4.2068 
4 . 4343 
4.6234 
4.7719 
4.8796 
4.9494 

7.6996 
7.6683 
7.5774 
7.4354 
7.2551 
7.0513 
6 . 8391 
6.6313 
6.4369 
6.2610 
6 . 1040 
5.9626 
5 . 8314 
5.7039 
5.5742 
5 , 4376 

0 . 0000 
0 -6656 
1.3103 
1,9156 
2.4676 
2,9579 

3.3844 
3.7503 
4.0627 
4 3309 
4.5647 
4.7724 
4.9603 
5 . 1324 
5.291 
5.4376 

7.6996 
7.697 
7,6898 
7.6782 
7.6632 
7.647 
7.6307 
7.618 
7.612 
7.613 
7.622 
7.637 
7.656 
7.6731 
7,685 
7.689 
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TABLE VI 

Inner Boundary (C,) Outer Boundary (C,) 

1 
2 

0' 

6' 

13' 
19 ' 
24' 
2 7' 
30 ' 

0' 5.00 
5' 5,OO 

l o o  5.00 
15' 5,OO 
20' 5,OO 
25' 5,OO 
30' 4.95 

1 
2 

Oo 0' 6.30 
30' 30' 4.202 
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TABLE VI1 

Inner Boundary (C,) Outer Boundary (C,) 

0 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

4 0 9999 
5 0 0000 

4 , 9999 
4 , 9999 
5 .oooo 
4 9999 
4,9995 
5,0005 
5,0014 
4.9908 
4,9499 

0 ,0000 
0.39055 
0 , 7730 
1,1402 
1,4854 
1,8037 
2.0923 
2 3479 
2 , 5635 
2 7324 
2,8578 

6 , 2999 
6.2851 
6 2417 
6 , 1736 
6.0862 
5,9862 
5 , 8799 
5 , 7726 
5.6669 
5,5627 
5 4567 

0.000 

0,4348 
0 . 8579 
1.2589 
1.6295 
1,9645 
2.2619 
2,5232 
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